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compared with the GITT solution. The bulk temperature, Nusselt number, the damping and phase lag
coefficients as function of the inlet temperature frequency are plotted.
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1. Introduction

Knowledge of the thermal response of the duct wall and the
fluid temperature subjected to a periodic disturbance applied at the
inlet in forced laminar and turbulent flow inside ducts is important
for many engineering applications, where hot and cold fluids pass
in succession, such as in regenerative and recuperative heat
exchangers.

The investigations on forced convection with periodic inlet
temperature have been performed by numerous researchers
[1-18]. The solution of heat transfer problems of this type usually
leads to a non classical Sturm-Liouville complex system which no
known solutions are available. The main difficulty in the analysis of
this class of problems is finding the solution for the resulting
complex eigenvalue problem.

In the studies [1-6], only the fluid energy equation was solved
but without conjugation with the walls. Kaka¢ and Yener [1,2]
considered a transient energy equation with inlet temperature
varying over time for slug flow and turbulent heat transfer between
two parallel-plates. The resulting Sturm-Liouville problem could
not be solved and an experimental technique was utilized to esti-
mate the first eigenvalue. Cotta and Ozisik [3] studied laminar
forced convection with periodic variations of inlet temperature
without conjugation with the walls both parallel-plate and circular
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ducts. They used an integral transform technique, avoiding the
complex eigenvalue problem and solving a coupled system of
ordinary differential equations.

In references [7-16], the methodologies used in the previous
works are advanced further by considering the effects of heat
capacity of a duct wall. Sparrow and Farias [7] seem to be the first
investigators who included the effect of wall conjugation. They
investigated the slug flow periodic laminar forced convection in
a parallel-plate channel but without considering the effects of heat
conduction within the wall. A trial and error procedure was
employed for the numerical evaluation of the real and imaginary
parts of the complex eigenvalues. Cotta et al. [8] utilized the solu-
tion methodology suggested by Sparrow and Farias [7] to solve the
conjugated laminar forced convection in parallel-plate ducts and
circular tubes for slug flow with periodically varying inlet
temperature. The sign-Count modifying method is adopted for the
determination of the complex eigenvalues. Kim and Ozisik [9]
treated the same problem with parabolic velocity profile, the
resulting complex eigenvalues problem is solved by using a Runge-
Kutta method. Travelho and Santos [10,11] solved the same problem
that had been developed before in ref. [7,8] with the same physical
conditions by applying the Laplace transform, avoiding the
computation of the complex eigenvalues and numerically calcu-
lating the inverse of the Laplace transform. Kaka¢ and Li [12,13]
recalled the theoretical analysis of [1] to add the effects of wall
thermal capacitance and external convection but still without
conduction within the wall.
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Nomenclature

Qnk coefficient defined by equation (9b)

at fluid-to-wall thermal capacitance ratio
[prCrR1/psCs(Ry — Ry)]

A(x™) dimensionless temperature amplitude

bnk coefficient, defined by equation (9b)

Biext external Biot number [heyxR1/kf]

Biine internal Biot number [hincR1/kf]

Bit modified Biot number [hexcR1/kf]

Cy coefficient, defined by equation (11b)

fn coefficient defined by equation (11c)

Rext convection heat transfer coefficient outside the wall
(Wm2K)

Rint convection heat transfer coefficient inside the wall
(Wm2K1)

k thermal conductivity (Wm™'K™1)

Qw wall heat flux

r radial or normal coordinate (m)

Ry radius of circular duct or half the spacing between
parallel-plate (m)

Ry outer radius (m)

T fluid temperature (K)

Tw ambient temperature (K)

To amplitude of inlet temperature (K)
t time variable (s)

u flow velocity (ms™1)

i mean velocity (ms™!)

Vik eigenvector for equation (10)
X axial coordinate (m)

Greek symbols

« thermal diffusivity (m?s~')

8 (Ry — Ry) /w720

Q dimensionless inlet frequency
Un eigenvalues of equation (10)

n damping coefficient
¢(xT)  phase lag (Rad)

0 solid temperature (K)
T period [27/w] (S)

® inlet frequency (Hz)

Subscripts and superscripts

b bulk temperature
(Y centreline and wall value
f s fluid and solid properties

In [14] a periodic laminar forced convection within the thermal
entrance region of parallel-plate channels is analytically solved by
making use of the Generalized Integral Transform Technique (GITT)
and mixed symbolic-numerical computation. A fifth kind boundary
condition at the channel walls that includes external convection
and wall thermal capacitance effects is considered.

The same problem, which takes into account the heat axial
diffusion along the duct wall, is investigated by Guedes and Cotta
[15] and Guedes et al [16]. A “thin wall” model is adopted that
neglects transversal temperature gradients in the solid.

In the studies [7-16], the wall effects are included in the thermal
boundary condition at the fluid-wall interface. This condition can
be justified only for heat transfer in flows bounded by extremely
thin walls. In general case, the channel wall has a finite thickness
and thermal capacitance. To study this problem deeply, it is
necessary to take in consideration the heat conduction in the wall.
Fourcher and Mansouri [17,18] analysed the problem of periodic
laminar and turbulent forced convection taking into account the
transversal heat conduction in the duct walls.

There exist other studies on the extensions to the Graetz
problem. Among the important extensions are the consideration of
slip flow [19-21], non Newtonian fluids [22,23] and viscous dissi-
pation [24]. In the literature, only a limited amount of works is
available on conjugate heat transfer problems with heat diffusion in
the duct walls. This is the reason why, in this work, the transversal
heat conduction in duct walls is considered in the analytical solu-
tion of the periodic laminar forced convection inside ducts. A
parabolic velocity profile and convection from the ambient
medium are accounted. An appropriate extension of the General-
ized Integral Transform Technique (GITT) is developed, avoiding the
complex eigenvalue system and solving a coupled first-order
ordinary differential equations. This technique constitutes
a complete solution (CS) of the conjugated periodic problem.

For most engineering applications, the thermal design engineer
reduces considerably the theoretical analysis by using the quasi-
steady approach (QSA) which employs a standard heat transfer
coefficient at fluid-solid interface. Consequently, the question

which can be put is to know the limits of such approach in its
capacity of prediction. In this work, it was decided to compare it to
the complete solution (CS). The effects of the dimensionless
frequency of inlet oscillations on the damping and phase lag coef-
ficients are illustrated.

2. Problem formulation

Consider laminar forced convection inside ducts, such as
parallel-plate channels and circular tubes, subjected to periodic
time variation in the inlet temperature as represented in Fig. 1. The
transversal heat conduction within the duct walls is considered.

The dimensionless formulation of this transient conjugated
problem is given as:

Fluid region

O e ()20 Li(rmaT*)

o+ Xt rtmor+ ort
O<rf<1; x*>0; t" >0, (1a)
T* :sin(Qt*), at xt =0; 0<rt*<1; t*>0 (1b)
hext
| - i
R; 53 ?
0 — X
—
—
ﬁ

Fig. 1. Geometry of the theoretical analysis.
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T+

— =0, at
or+ ’

m=0; x">0; t*™ >0 (1c)

Solid region

Faﬂ _ 1 i(ﬁma_a) T<rt<ry; x*>0;t">0 (1d)

ott  rtmart art
ol . " .o N
“art = Biextfl, at 1" = 3 X7 > 0; t7>0 (1e)

Fluid-solid interface

o0 oT*
Yort ~ art (1f)
=T+ at r* =1; x*>0; t+t>0.

where m = 0, for parallel-plate channel and m = 1, for circular duct.
The used dimensionless groups are given as follow:

r R Xo ta k
rt=— rf =2 xt = —f; th = —f; = —S;
R’ 2 Ry R%u R? L
T-T Tw-—-T
+ _ ®. _w >,
=% =75+
. heXtR1 0)R2 of
Biext =—1. g = 1. 1 =L
ext ks o as

B = (R2*R1)\/% and u*(ﬁ) — %

where u*(r") is the dimensionless velocity profile, or
ut (r*) _ [%52(1—r*2) for parabolic flow
1 for slug flow

Here, we are interested in the periodic solution of the problem. We
seek a solution as:

T+(x*,rt,t7) = TH(x*, r")exp(iQt)

O(x*,rt,t7) = O(x*,r")exp(iQt). 2)

where i = v—1. When we substitute equation (2) into equations
(1), we obtain the following system:

Fluid region

T+
zQT++u+(r+>aT 1 i(ﬁrmi), O<rt<1;x">0 (3a)

oxt rtmart ort
=1, atxt =0, 0<rt- <1 (3b)
T+
2%=Oatr+=0; xt>0 (30)
Solid region

2 ~
. = 1 0 ol
21(@'8_1) 0——r+mm(r+mar—+>, 1<rf<ry; x*>0 (4a)

a0 -
= —Biexel, at 1t =13; xT >0 (4b)

Fluid-solid interface

80  oT*
Tort ~ ort (4c)
=T+ at r*=1; xt>0.

3. Complete solution (CS)

Introducing the complex parameter g = B(1 — i), the tempera-
ture distribution within the solid for both geometries of the duct is
relegated to the Appendix. The fluid temperature will be found by
solving the following system:

iQTt +u™t (r+>2£+ rlm%<r+mg>7 O<rt<1;x">0 (5a)
Tt =1, at xt =0, 0<rt<1 (5b)
‘Z—i:o, at " =0; x*>0 (5¢)
(’;Z—I-FHT*fO at rt =1; x*>0. (5d)

The complex coupling parameter H is given for both geometries of
the duct and the asymptotic cases are discussed in the appendix. It
can be written in general form as:

H = Ry +iGy. (6)

A formal solution of the problem (5) is developed through the
classical Integral Transform Technique (GITT). However, the
complete numerical solution would require an accurate evaluation
of eigenvalues and eigenfunctions of the corresponding complex
non classical Sturm-Liouville system. To avoiding the complex
eigenquantities problem, an appropriate auxiliary problem is
chosen as:

1 aw(x r ) 2 +\ +
r+mar+< ort + A 1//<A7r ) =0, O0<rt<1 (7a)
WA v

e 0, at " =0 (7b)
oy(Art)
T‘FRH\//(A,T’JF) = 07 at r+ = 1. (7C)

The eigenfunctions of the auxiliary problem are given respec-
tively for parallel-plate channel and circular ducts by:

Vo(rt) = cos(Agrt) and v, (rt) = Jo(Anr™), while the related
parameter A can be determined respectively by the following
transcendental equations: A,tg(A;) = Ry and Ryjo(An) = AnJ1(An).

The auxiliary problem (7) allows the definition of an integral
transform pair for the function T+ (x*,r") given by:

i: ‘//n(ﬁ)f; (x*) (8a)

Inversion T*(x*,r*) =

x+ r*)r*’”dfr (8b)

1
Transform T+ x+ /
Nn

0

where the normalization integral is given by
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2
rmdrr. (8¢)

1
— [[tat)]
0
Equation (5a) and inlet condition (5b) are now operated by:
[ ()
nl) vm g+
= Zrtidr T, 8d
[ (8d)

By applying the inversion formula (8a), we obtain the following
equations:

oo
Z ank ClX*

where, a,;, = fo rmut(rt)

Z bnkT+ (x*) =0, x*>0 (9a)

lpn( )‘pk( ) +
Wdr and
Yn(D¥i(1)

6nk‘Q+G \/N_n\/N_k:|

The system (9) forms a set of infinite, coupled, first-order linear
ordinary differential equations. Usually, it is very difficult to solve
analytically the problem. Therefore, taking a sufficiently large
number of equations, N, the system (9) can be expressed in matrix
form as:

[bak — Mapklvpk. = 0. (10)

Once the related problem (10) is solved for the eigenvalues u,, and
eigenvectors vy, the solution is constructed from the linear
combination of independent solutions:

T (X+> = kzN: Ck”nkeXp( - MI<X+>-,
-1

where vy, is the kth component of the nth eigenvector and C; are
determined by using this solution to satisfy the inlet condition,

bue = Od2 + i (9b)

(11a)

N
> Cevne = f. (11b)
k=1

! +
where f, = /r*’"m\ﬂ;—n)dr+ (11¢)

0

Then, the inversion formula given by equation (8a) is invoked to
compute the complete solution:

T+ (x*, r*) Z \/N_n Z Ckvnkexp< - ukx+). (12a)

At the centreline of the duct, equation (12a) can be written as:

T;r (X+> = nZN:] w\;lg\% ZN: Ck“nkexp< - :“kx+)

k=1

N N
> CkeXP< - F‘kx+> r; \;"Nin

k=1

Il
M=

Grexp( — mx") (12b)

=
Il

1
N oy
where G = C¢ > nk
n=1

N

We determine the dimensionless wall heat flux, wall and bulk
temperature respectively qw(x"), Tw(x") and Ty(x") from their
definitions:

N

N
=-> CkeXP< - NI<X+) Z Sk %(1
k=1

aw(x) = 50|

= Zlexp( X ) (13a)
k=1
T (x*) = ZN:Cexp<—,u x*) EN: Unk (1)
w = k k: n_]\/m n
= iwkexp(—uw), (13b)
k=1
1
Tb<x+) = (mﬁ—l)/r*’”u*(r*)T*()fr r*)err
N 0
= > Meexp( — mx*), (13¢)
k=1
where Q = —Ckn:i TRV (1) Wi = ckij] j';vinwnm
_ N Vnk / m
and M;, = (mH)Ck';mo rt u+(r+)¢n<r+)dr+. (13d)

So, the final solutions can be conveniently expressed in polar
coordinates as:

qw(x+, t+> = Af (x+)sin [Qﬁ — ¢ (x+)], (14a)
Td b( 7t+> = Acwp (x*)sin [QtJr — dewb (x*)], (14b)
where A¢ (x*) = ‘qw (x*)‘ and ¢y (x*) = —argqw (x*), (14¢)

Aciw,b (X+> = Tc+,w,b<x+)

We determine the Nusselt number Nu from its definition:

and ¢cwp (X+> = _archwb< )

oT*(r+,x*, t+)|
22-m ars r=l__ 15
O(1,x+,t+) = T, (x*+,t+) (15)

Nu(xi t*) =

4. Quasi-steady approach (QSA)

For comparison purpose, the same problem (1) will also be
solved by the quasi-steady approach (QSA) which uses a constant
heat transfer coefficient at liquid-solid interface. The problem will
now be analyzed under the assumption of the heat flux:

oT+

qwzfa?:him(Tgfa) at r* =1, x* >0, t+>0  (16)

where qw, T} and 6 are function of time, but h;y, is time indepen-
dent. In applying the quasi-steady model, the problem consists to
determine the bulk temperature T;", which is defined as:

1
T (x*) = (m+ 1)/ rtmyt (r*)T+ (x*,r*)dr+ (17)
0
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Table 1

The first five coefficients and eigenvalues for a parallel-plate channel for different a* at Biex¢ = 0.0 and Q =0.1.

at n An n Gn

5E-5 1 0.14928E+1 0.17982E+1+0.17087E+0i 0.11965E+1+0.64585E—2i
2 0.44819E+1 0.20770E+2+0.78869E+0i —0.29048E+0-0.11147E—-1i
3 0.74807E+1 0.60701E+2+0.17334E+1i 0.15330E+0+0.96730E—2i
4 0.10493E+2 0.12165E+3+0.29220E+1i —0.10053E+0—0.82002E—2i
5 0.13521E+2 0.20366E+3+0.43030E+1i 0.73444E—1-+0.75855E—2i

8.5E-3 1 0.98063E+0 0.10227E+1+0.48803E+0i 0.11334E+1+0.44985E—1i
2 0.35343E+1 0.15775E+2+0.20813E+1i —0.17891E+0—0.69884E—1i
3 0.65046E+1 0.50599E+2+0.32368E+1i 0.67147E—1+0.37863E—1i
4 0.95765E+1 0.10639E+3+0.40744E+1i —0.34546E—1-0.23050E—1i
5 0.12681E+2 0.18335E+3+0.47324E+1i 0.21095E—1+0.15250E—1i

0.1 1 0.60357E+0 0.43278E+0+0.45360E+0i 0.10605E+1+0.50290E—1i
2 0.32682E+1 0.13440E+2+0.13660E+1i —0.76115E—1-0.66599E—1i
3 0.63486E+1 0.47401E+2+0.17640E+1i 0.22505E—1+0.24319E—1i
4 0.94687E+1 0.10264E+3+0.20361E+1i —0.10783E—1-0.12475E—1i
5 0.12599E+2 0.17919E+3+0.22503E+1i 0.63736E—2+0.76321E—2i

at n My Wh Qn

5E-5 1 0.91922E-+0-0.94408E—2i 0.53974E—1-0.40280E—1i 0.18002E+1+0.26154E+0i
2 0.50637E—1+0.34453E—2i 0.35818E—1-0.23634E—1i 0.11355E+1+0.23269E+0i
3 0.13948E—1+0.16353E—2i 0.29776E—1-0.17825E—1i 0.90915E+0+0.22826E+0i
4 0.59816E—2+0.96030E—3i 0.26331E—1-0.14385E—1i 0.77765E+0+0.22816E+-0i
5 0.31675E—2+0.63539E—3i 0.23960E—1-0.11977E-1i 0.68637E+0+0.22887E+-0i

8.5E-3 1 0.98052E+0—0.20764E—1i 0.47453E+0—0.21637E+0i 0.10119E+1+0.37886E+0i
2 0.17043E—1+0.15826E—1i 0.17763E+0+0.14771E—1i 0.23842E+0+0.28203E+0i
3 0.18285E—2+0.31139E—-2i 0.84145E—1+0.27408E—1i 0.83015E—1+0.16348E+-0i
4 0.39229E—-3+0.95508E—3i 0.48291E—-1+0.22347E—1i 0.37942E—1+0.10351E+-0i
5 0.12265E—3+0.38477E-3i 0.31432E-1+0.17316E—1i 0.20634E—1+0.71430E—1i

0.1 1 0.99943E+0-0.71601E—2i 0.78885E+0—0.18882E+-0i 0.43223E+0+0.35591E+0i
2 0.67388E—3+0.62272E—2i 0.97669E—1+0.68310E—1i 0.30167E—2+0.82216E—1i
3 ~0.57453E—4+0.65202E3i 0.32198E—1+0.30275E—1i ~0.32768E-2+0.30331E1i
4 ~0.24369E—4+0.15926E3i 0.16376E—1+0.17070E—1i ~0.25877E~2+0.16122E1i
5 ~0.10629E—4+0.57459E—4i 0.10105E—1-+0.11107E—1i ~0.19130E-2+0.10187E—1i

After integrating equation (1a) from r* =0 to r* = 1, an
energy balance is obtained as equation (18a), therefore, the system

of equations (1) becomes:

Fluid region

oy
ott

T (0) = sin(Qt+), at xt =0; t" >0
Solid region

W
at+ — rtmort

o

—arF

oxt _ 22—2m

(0|r+=l - Tb+>, xt>0, t+>0

a0
r+m
or+

Fluid-solid interface

af

art

Bimt(ﬂng) at rt = 1; x* > 0.

(18a)

(18b)

), T<rf<rf; xT>0; t">0 (18¢)

at r* =rf; x*>0; t" >0 (18d)
(18e)

where the Nusselt and Biot numbers are given respectively by:

Nu = zzfmhintRl

and Bij,, =

Nu
722—111'

(19)

The periodic solutions for T and ¢ can then write as:

T, (x*,t*) =T (x*)exp(i.Qt*)

0(X+, rt, t*) = é(x*, r*)exp (iQt*).

(20)

Then, the system of equations (18) becomes:

Fluid region

-, T Nu
0T+ b _
l‘QTb +ax—+ T 22-2m

T;(0) =1, atx" =0

Solid region

(é|r,:1—Tg), 0<rt<1; x>0 (21a)

(21b)

2 5
(B Nz 1 0 00
2 =~ [tm_ 1 + ot xt 21
l r3 -1 Fmarr T opr ) 1STT <123 X7 >0 (210
_69 i + . oyt
—apr = Blextl, at 1t =y x7>0 (21d)

Fluid-solid interface

66% = Biint@*fg) at r* =1; xt >0. (21e)
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Table 2

The first five coefficients and eigenvalues for a circular tube for different a* at Biexe = 0.0 and Q = 0.1.

at n An n Gn

5E-5 1 0.27046E+1 0.46462E+1-+0.53724E+-0i 0.14669E+1+0.27581E—1i
2 0.61312E+1 0.26494E-+2+0.18812E+1i —0.77206E+0—-0.75172E—1i
3 0.94791E+1 0.65488E+2+0.32754E+1i 0.51391E+0+0.82879E—1i
4 0.12761E+2 0.12118E+3+0.45065E+1i —0.37653E+0—0.85348E—1i
5 0.16001E+2 0.19335E+3+0.55719E+1i 0.29147E+0+0.77433E—1i

8.5E-3 1 0.15914E+1 0.22443E+1+0.70169E+0i 0.13359E+1+0.89083E—1i
2 0.42847E+1 0.16932E+2+0.18464E+1i —0.50578E+0+0.15527E+0i
3 0.72842E+1 0.46952E+2+0.26521E+1i 0.27654E-+0+0.11982E+-0i
4 0.10363E+2 0.92754E+2+0.32500E+1i —0.18006E+0+0.90159E—1i
5 0.13470E+2 0.15445E+3+0.37279E+1i 0.12941E+0+0.70902E—1i

0.1 1 0.12273E+1 0.14427E+1+0.67524E+0i 0.12176E+1+0.93771E—1i
2 0.40662E+1 0.15057E+2+0.13208E+1i —0.31199E+0-+0.14394E+0i
3 0.71480E+1 0.44517E+2+0.16506E+1i 0.15019E+0+0.84608E—1i
4 0.10266E+2 0.89947E-+2+0.18856E+1i —0.93370E—1+0.56362E—1i
5 0.13394E+2 0.15136E+3+0.20740E+1i 0.65696E—1+0.41247E—1i

a* n Mp Wh Qn

5E-5 1 0.68522E+0—0.34035E—1i —0.14434E+0+0.73451E—1i 0.74425E+0—0.14805E+1i
2 0.91546E—1+0.97621E-2i —0.10361E+0+0.34442E—1i 0.64512E+0—-0.91209E+-0i
3 0.30197E—1+0.69862E—2i —0.77368E—1+0.14285E—1i 0.55104E+0-0.58683E+-0i
4 0.13670E—1-+0.44685E—2i —0.58889E—1+0.42603E—2i 0.45953E+0-0.39217E+-0i
5 0.73952E—2+0.29356E—2i —0.45917E—1-0.58895E—3i 0.38201E+0—0.27355E+0i

8.5E-3 1 0.94724E+0—-0.38318E—1i 0.41147E+0—0.17949E+-0i 0.10777E+1+0.26197E+-0i
2 0.42818E—1-+0.26554E—1i 0.17403E+0+0.18472E-2i 0.33959E+0+0.26377E+0i
3 0.66939E—2-+0.68579E—2i 0.89621E—1+0.18690E—1i 0.14836E+0+0.17073E+0i
4 0.18264E—2-+0.24033E—2i 0.54248E—1+0.17360E—1i 0.80767E—1+0.11524E+0i
5 0.68062E—3+0.10472E2i 0.36548E—1+0.14317E—1i 0.50495E—1+0.82795E—1i

0.1 1 0.98304E+0—0.20648E—1i 0.64046E+0—0.16355E+-0i 0.71397E-+0+0.27680E+0i
2 0.14560E—1+0.16461E—1i 0.13608E+0+0.41784E—1i 0.10020E+0+0.13098E+-0i
3 0.16674E—2+0.27005E—2i 0.55354E—1+0.25091E—1i 0.35310E—1+0.60910E—1i
4 0.41698E—3-+0.78695E—3i 0.30621E—1+0.15882E—1i 0.18186E—1+0.35583E—1i
5 0.15158E—3+0.31159E-3i 0.19756E—1+0.10985E—1i 0.11236E—1+0.23653E—1i

The bulk temperature distribution is obtained as:

O(x+,rt) = T (xT)w(rt), (23)
. () = To () (r)
Ty <x+) =exp| — / odxt |, (22a) where the function ¥ (™) is given for the parallel -plates (m = 0) as:
0 - -
. Gr+ G . Br+
with : o = i9+722’\gm(1 —y(r =1)). (22b)  ¥(r") = 0(Bi, ) |cos mo1) e o) %
i : . . . . Br+ Br+
By posing ¢ = i¢, the bulk temperature is written: :G = 2 y_ 2
y posing 0 = 7 +if p with : G o 1sm(r2+ 2 l) Blextcos(r2+ 1)
T; (x+> = exp(fnx+)exp(fi5x+>7 (22¢) B 3@ s
F:r;_lcos r;—l + BiextSin ;_1
. Bi:
¢(Biine, ) = - ; c = ; i c (24b)
sin(rﬁ 1) [r;ﬁ”gii“tf +eos| =7 ) |Bim— 77
where T; (x*) = exp(—nx*) and ¢, = —argT} (x*) = Ext. For the cylindrical ducts (m = 1):
(22d) : R
. . . . . p’rJr G ﬁr+
The special and temporal distributions on bulk temperature can ll’(r*) = @(Biine, 8) |Jo | + fYO - , (24¢)
be expressed as: -1 ;-1

T (x+7 t+) — A, <x+)sin [Qt+ — ¢ <x+)] (22e) i B Br

. Bry
. S r+7-ljl (r+1) —Blext]0<r+_l ,
The temperature distribution in the solid is expressed by: 2 2 2
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Table 3
Comparison of the ten eigenvalues and coefficients with the values given by Kim and Ozisik [9] for parallel-plate channel; at Biex; = 0.0 and a* = 0.001.
b* n M, by Kim and Ozisik [9] M, (present study) 1y by Kim and. Ozisik [9] 1y (present study)
2 1 0.10025E+1-0.49298E—1i 0.10037E+1-0.50454E—1i 0.10495E+1+0.98404E+-0i 0.10498E+1+0.10077E+1i
2 0.35413E—2+0.43261E—1i 0.27086E—2-+0.44537E—1i 0.14694E-+2+0.46140E+1i 0.14636E+2+0.47089E+1i
3 —0.37603E—2+0.47722E—-2i —0.40243E—2+0.47231E-2i 0.47956E+2+0.64429E+1i 0.47833E+2+0.65326E+1i
4 —0.12425E—2+0.85852E—3i —0.12959E—2+0.81770E—3i 0.10271E+3+0.74640E+1i 0.10256E+3+0.75412E+1i
5 —0.48364E—3+0.23924E—3i —0.49886E—3+0.22112E-3i 0.17893E+3+0.82196E+1i 0.17876E+3+0.82907E+1i
6 —0.22370E—3+0.88017E—4i —0.22942E—3+0.79311E—4i 0.27656E-+3+0.88429E+1i 0.27637E+3+0.89129E+1i
7 —0.11751E—3+0.38880E—4i —0.12010E—3+0.34248E—4i 0.39552E+3+0.93828E+1i 0.39535E+3+0.94554E+1i
8 0.63680E—4-+0.19054E—3i —0.69114E—4+0.16836E—4i 0.53588E+3+0.98647E+1i 0.53569E+3+0.99418E+1i
9 —0.41930E—4+0.10754E—4i —0.42713E—4+0.91036E—-5i 0.69761E+3+0.10302E+2i 0.69738E+3+0.10386E+2i
10 ~0.27407E—4+0.63661E5i ~0.27901E—4+0.52944E - 5i 0.88064E+3-+0.10704E+2i 0.88042E+3+0.10797E+2i
10 1 0.92301E+0-0.31169E—1i 0.91520E+0-0.32877E—1i 0.18465E+1+0.31459E+0i 0.18684E+1+0.33480E+0i
2 0.54267E—1+0.10653E—1i 0.55626E—1-+0.10458E—1i 0.20945E+2+0.23772E+1i 0.21174E+2+0.24932E+1i
3 0.15375E—1+0.58963E—2i 0.16209E—1+0.59536E—2i 0.60761E+2+0.57261E+1i 0.61313E+2+0.60790E+1i
4 0.65324E—2+0.38415E-2i 0.71118E—2+0.40131E-2i 0.12111E+3+0.10042E+2i 0.12205E+3+0.10823E+2i
5 0.32607E—2+0.27437E—2i 0.36711E—2+0.29885E—2i 0.20188E+3+0.15060E+2i 0.20314E+3+0.16494E+2i
6 0.17201E—2+0.20451E—2i 0.19885E—2+0.23316E—-2i 0.30291E+3+-0.20496E+-2i 0.30440E+3+0.22806E+2i
7 0.89521E—3+0.15441E—2i 0.10366E—2+0.18361E—2i 0.42426E+3+0.26057E+-2i 0.42569E+3+0.29394E+2i
8 0.42926E—3+0.11608E—2i 0.46597E—3+0.14228E—2i 0.56597E+3+0.31464E+2i 0.56705E+3+0.35851E+2i
9 0.16654E—3-+0.86287E—3i 0.13147E-3+0.10707E—2i 0.72818E+3+0.36506E+2i 0.72865E+3+0.41816E+2i
10 0.24832E—4+0.63413E-3i —0.47224E—4+0.78135E-3i 0.91117E+3+0.41062E+-2i 0.91081E+3+0.47063E+2i
Table 4
Comparison of the ten eigenvalues and coefficients with the values given by Kim and Ozisik [9] for circular tube; at Biey, = 0.0 and a™ = 0.001.
b* n M, by Kim and Ozisik [9] M, (present study) un by Kim and. Ozisik [9] 1y (present study)
2 1 0.10152E+1-0.10925E+-0i 0.10170E+1-0.11083E+-0i 0.22092E+1+0.20035E+1i 0.22120E+1+0.20319E+1i
2 0.33093E—4+0.96444E—1i —0.13182E—2+0.98236E—1i 0.14959E+2-+0.49448E+1i 0.14914E+2+0.50032E+1i
3 —0.95922E—2+0.10060E—1i —0.99431E—2+0.99399E—2i 0.43418E+2+0.58603E+1i 0.43348E+2+0.59022E+1i
4 —0.30442E—2+0.18357E—2i —0.31115E—-2+0.17714E—2i 0.88317E+2+0.64094E+1i 0.88234E+2+0.64430E+1i
5 —0.11908E—2+0.52695E—3i —0.12101E—2+0.49919E—3i 0.14935E+3-+0.68613E+1i 0.14927E+3+0.68914E+1i
6 —0.55656E—3+0.19894E—3i —0.56372E—3+0.18530E—3i 0.22648E+3+0.72570E+1i 0.22638E+3+0.72847E+1i
7 —0.29515E—3+0.89697E—4i —0.29835E—3+0.82225E—4i 0.31962E+3+0.76115E+1i 0.31953E+3+0.76387E+1i
8 —0.17158E—3+0.45759E—4i —0.17318E—3+0.41235E—4i 0.42879E+3+0.79345E+1i 0.42871E+3+0.79614E+1i
9 —0.10687E—3+0.25554E—4i —0.10774E—3+0.22666E—4i 0.55401E+3+0.82322E+1i 0.55390E+3+0.82598E+1i
10 —0.70235E—4+0.15292E—4i —0.70741E—4+0.13275E—4i 0.69520E-+3+0.85086E+1i 0.69510E+3+0.85369E+1i
10 1 0.13119E+1-+0.36431E-3i 0.82772E+1-0.60921E—1i 0.36051E+1+0.54019E+0i 0.36268E+1+0.55750E+0i
2 0.10287E+0+0.13481E—1i 0.10396E+1+0.12874E—1i 0.21901E+2+0.24064E+1i 0.22031E+2+0.24671E+1i
3 0.35129E—1+0.10718E—1i 3.55896E—1+0.10451E—1i 0.55740E+2+0.52175E+1i 0.56030E+2+0.53834E+1i
4 0.16096E—1+0.80320E—2i 1.68662E—1+0.80914E—2i 0.10497E+3+0.87739E+1i 0.10545E+3+0.91325E+1i
5 0.85461E—2-+0.62805E—2i 9.15278E—2+0.65118E—2i 0.16931E+3+0.12879E+2i 0.17010E+3+0.13543E+2i
6 0.47283E—2+0.49921E-2i 5.16343E—2-+0.53390E—2i 0.24910E+3+0.17325E+-2i 0.24985E+3+0.18393E+2i
7 0.25571E—2+0.39496E—2i 2.81193E—2+0.43482E—2i 0.34388E-+3+0.21847E+2i 0.34460E+3+0.23399E+2i
8 0.17381E—2+0.22888E—2i 1.35583E—2+0.34490E - 2i 0.45383E+3+0.26203E+2i 0.45440E+3+0.28250E+2i
9 0.50967E—3+0.23250E—2i 4.78016E—3+0.26401E—2i 0.57913E+3+0.30205E+2i 0.57939E+3+0.32682E+2i
10 0.91533E—4+0.17255E-2i —7.55772E—5+0.19522E—-2i 0.72000E+3+-0.33753E+-2i 0.71982E+3+0.36534E+2i
Table 5
Behaviour of Nusselt number as a function of axial distance x* for various orders (N) in a parallel-plates channel (a* = 8.5E—3; Biext = 0.0 and Q =0.1)
a’ N xt=02 x"=04 x"=0.6 x"=038 xt=1
8.5E-3 1 0.60186E+2 0.63009E+2 0.65907E+2 0.68886E+2 0.71956E+2
2 0.11878E+2 0.11138E+2 0.11105E+2 0.11120E+2 0.11139E+2
3 0.10186E+2 0.97417E+1 0.97113E+1 0.97157E+1 0.97229E+1
4 0.96677E+1 0.92694E+1 0.92394E+1 0.92406E+1 0.92444E+1
5 0.94082E+1 0.90310E+1 0.90011E+1 0.90006E+1 0.90029E+1
6 0.92522E+1 0.88869E+1 0.88569E+1 0.88558E+1 0.88571E+1
7 0.91478E+1 0.87902E+1 0.87604E+1 0.87586E+1 0.87592E+1
8 0.90732E+1 0.87209E+1 0.86911E+1 0.86888E+1 0.86890E+1
9 0.90170E+1 0.86688E+1 0.86389E+1 0.86364E+1 0.86362E+1
10 0.89817E+1 0.86359E+1 0.86061E+1 0.86033E+1 0.86030E+1
15 0.88479E+1 0.85113E+1 0.84815E+1 0.84780E+1 0.84769E+1
20 0.87878E+1 0.84553E+1 0.84255E+1 0.84217E+1 0.84203E+1
25 0.87528E+1 0.84226E+1 0.83928E+1 0.83888E+1 0.83872E+1

30 0.87297E+1 0.84010E+1 0.83712E+1 0.83671E+1 0.83654E+1
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: Bry 8 Bry
F = BiextY, 2_1- Y 2
ext Yo -1 g -1'\rg-1

QD(Biintv 6) =

different. The first corresponding to regenerative heat exchangers
with sheets of stainless steel and a close spacing of 2Ry =10 mm
between the plates [25]. The fluid used is air at low temperature
(-=50°C).

) P )

5. Results and discussion

Based on the complete solution (CS), we present in Table 1 for
fully developed laminar flow between a parallel-plate channel, the
first five eigenfunctions G, M, Wy, Q, and eigenvalues u, and A, for
different a™ at Biex; = 0. In Table 2, the same coefficients are listed
for circular duct. These values can be used in equations (14) to
calculate wall heat flux and temperatures distribution. For
comparison purpose with the literature, Tables 3 and 4 show the
comparison between the coefficient M, and the eigenvalues uj
calculated from GITT model by making use of the subroutine EVLCG
from IMSL package and those given by Kim and Ozisik [9] from the
Runge-Kutta technique. As it can be seen, the results obtained with
these two approaches are in good agreement. In order to facilitate
the comparison with literature, numerical values for the parameter
a’ are the same ones as in the refs. [9,10,15,16].

Table 5 shows the convergence of Nusselt number (Nu) as
function of the truncating order N. Results obtained indicate that
N =30 insure an accuracy of three digits everywhere along the
duct. Fig. 2 presents the bulk temperature amplitude distribution
for different values of order N. It can be noticed that only few terms
(N=5) were necessary. To provide results of high accuracy, five
eigenvalues are used for all the cases investigated here.

We study in what follows the influence of transversal heat
conduction within the duct wall on two practical cases physically

1.20 —

0.40 —

0.20 .
0.00 0.50 1.00 1.50

x+

Fig. 2. Amplitude of the bulk temperature as a function of axial distance x™ for various
orders (N) in a parallel-plates channel (a* = 8.5E—3; Biex = 0.0 and Q =0.1).

(24d)

a .00 —
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<
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Fig. 3. a. Effects of the thickness wall r on the amplitude of the bulk temperature
inside parallel-plates for the couple brick/air at t=4h and Biex=0. b. Effects of
thickness wall r§ on the phase lag of the bulk temperature inside parallel-plates for the
couple brick/air at =4 h and Biex=0.
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In the second case, the system consists of air (at high temper-
ature =400 °C) flowing inside fireclay brick walls spacing of
2R1 =10 mm [25].

Fig. 3 shows the amplitudes and the phase lags of the bulk
temperature along the channel for different rj (=Rz/R1) by fixing
T =4 h and Bigy; = 0. The particular value of thermal conductivity kg
corresponding to the second case (fireclay brick /air) is
0.36 wm~ ' KL The curves for different ry represent the effects of
the transverse temperature gradients in the solid. For increasing r3,
which represent an increase of the wall thickness, the amplitude
decays faster along the channel. It can be seen that for large values
of rj, (ie, 5), then the effects of the transverse temperature
gradients in the wall are pronounced. The difference of the
temperature amplitude with the isothermal wall case (using
equation (26a) is substantial. On the other hand, for the small
values of r3 (i.e., 2), the two curves (with and without conduction in
the wall) are very close to each other.

From Fig. 3b, for increasing values of r;, the difference of the
phase lags with the isothermal wall case (thin wall) is substantial
and the thin wall model cannot be retained. Fig. 4 shows the
amplitudes and the phase lags of the bulk temperature along the
channel for different rj by fixing 7 = 4 h and Biex; = 0. The particular
value of ks corresponding to the first case considered (stainless
steel/air) is 1I5wm™ 'K~

We note that in the same range of values of r5, the curves of the
bulk temperature amplitudes and phase lags are confused while
considering or disregarding the transverse heat conduction within
the wall. In this case, the hypothesis of the “thin wall” can be
adopted.

The effect of heat axial conduction within the wall was inves-
tigated by Guedes and Cotta [15]. It was observed that for
increasing (= u‘;ﬁ), which represents an increase in the wall
heat conduction; the amplitudes of the wall temperature are flat-

tened up in the regions very close to the inlet. For increasing values
ofat(= % < 0.005), the effect of the parameter § on the wall
temperature and the phase lags becomes less significant. They as

1.00 Amplitude - 1.60
—=e— Phase lag [Rad]
+_ 4 B
0.80 — I 2+= 2 rz;5>
3 —1.20
3
0.60 — P RS
0 4 %
N b 5 —0.80 &
= )
: B
0.40 — | &
— 0.40
0.20 —
0.00 T T T T T 0.00
0.00 0.50 1.00 1.50
x+

Fig. 4. Effects of thickness wall rj on the amplitude and phase lag of the bulk
temperature inside parallel-plates for the couple stainless steel/air (with and without
transversal conduction in the wall) at =4 h and Biex = 0.

also noticed that the amplitude for the bulk temperature is very
little influenced by 8 in the range considered (8 =10"7-10"%).

Finally, for systems of gases flowing inside a thin metal walls
corresponding to large values of a*(>0.005), the effects of axial
conduction in the wall cannot be neglected in regions close to the
inlet but the transverse heat diffusion in the wall can be
disregarded.

On the other hand, for small values of a* (thick wall with a large
thermal capacity), the transverse heat conduction within the duct
wall should be considered.

In Figs. 5 and 6, we present the bulk temperature amplitudes
and phase lags along the duct respectively for a parallel-plate
channel and a circular duct, for both the complete solution (CS)
represented by equation (13c) and the QSA evaluated by equation
(22c). As given by equation (22d), the bulk temperature amplitude

a 1.00 — Amplitude ¢ 0.80
-------- Phase lag [Rad] o,
Complete solution (CS) ,'. R o
0.80 — —*—QsA
— 0.60
0.60 — i >
o 5
= . — 040 —
A 3
0.40 — i —
— 0.20
0.20 —
0.00 T T T I , 0.00
0.00 0.50 1.00 1.50
x+
b 1.00 — Amplitude — 2.00
4
--------- Phase lag [Rad] ‘
Complete solution (CS) 'd' -
0.80 — —*— QSA
1.50
0.60 — ‘;-
—_ B)
4}5_; - 1.00 —
3 g
0.40 — S
10.50
0.20 —
0.00 = r | " l r 0.00
0.00 0.50 . 1.00 1.50

X

Fig. 5. a. Amplitude and phase lag for bulk temperature as function of axial distance in
a parallel-plate channel at a* = 8.5E—3, Q = 1. and Biexc = 0. b. Amplitude and phase lag
for bulk temperature as function of axial distance in a parallel-plate channel at
at=8.5E-3, Q=1 and Biey = 0.
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a 1.00 — — 1.50
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N |- Phase lag [Rad]
0.80 — Complete solution (CS) o
—+—QSA -
i - 1.00
0.60 — s
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< —_
< g
0.40 — S
— 0.50
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0.00 —4= r , . | . 0.00
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Fig. 6. a. Amplitude and phase lag for bulk temperature as function of axial distance in
acircular duct at at = 8.5E—3, Q = 0.1 and Biey, = 0. b. Amplitude and phase lag for bulk
temperature as function of axial distance in a circular duct at a” =8.5E-3, @ =1 and
Biaxe = 0.

is damped exponentially with the axial distance and the phase lag
increases linearly along the ducts.

In most industrial transient heat transfer problems, the thermal
design engineer reduces considerably the theoretical analysis by using
the quasi-steady approach (QSA) which employs a standard heat
transfer coefficient at interface. We will see in what follows if the QSA
can approach the CS and examine the effects of the inlet temperature
frequency on such approach. From the figures mentioned above, it can
be observed that the difference for the phase lag between the quasi-
steady approach (QSA) and complete solution (CS) is more significant
for larger values of dimensionless inlet frequency Q and increase with
axial distance x". Moreover, it is clear that this deviation is more
pronounced for a circular duct than a parallel-plate channel for a same
physical condition. On the other hand, we note that for the bulk
temperature amplitude, these two approaches are equivalent.

Fig. 7a and b shows the damping coefficient » as a function of
inlet temperature frequency Q for both the CS and QSA, respectively
for a parallel-plates and circular duct. Note that for lower values of
Q (2 <0.1), the results obtained by QSA fit very well with those
extracted from CS. On the other hand, for higher values of inlet
temperature frequency (Q > 0.1), the relative deviation is about
2.5% and 3% at Q = 0.5 respectively for a parallel-plate channel and
circular duct. In Fig. 8a and b, we present the phase lag coefficient £
as function of inlet temperature frequency in parallel-plates and
circular duct respectively. We note the similar trends as the

a 50— Completesolution (CS)
—— QSA
1.20 —
0.90 —
: -
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0.30 —
071 T 1 T T 1
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B L e T P
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Q

Fig. 7. a. Evolution of the damping coefficient as function of Q in parallel-plate
channel. b. Evolution of the damping coefficient as function of Q in circular duct.
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Fig. 8. a. Evolution of the phase lag coefficient as function of Q in parallel-plate
channel. b. Evolution of the phase lag coefficient as function of Q in circular duct.

damping coefficient 7 for lower inlet frequency (2 < 0.1). On the
other hand, for higher values of Q (>0.1), the discrepancy between
these two solutions becomes more pronounced and increases with
increasing of the inlet frequency. It's estimated at 31% for a circular
tube and at 15% for a parallel-plate channel at Q =0.5.

The spatial and temporal distributions of the bulk temperature
results obtained by QSA and CS are presented in Fig. 9a and b for
parallel-plates. Considering a given physical situation characterised
by a fixed fluid-to-wall thermal capacitance ratio a™, these figures
reveal that the amplitude of the time wise temperature variation

a g—
—_
7
=
+J 0.00
&
K Complete solution (CS)
B S QSA
N7 T 71 T T T T T 1
0.00 0.20 0.40 0.60 0.80 1.00
t/t
b 050

Tb+( t+, x+ )

Complete solution (CS) -~

050 — 1 T T T T " T ' 1
0.00 0.20 0.40 0.60 0.80 1.00
t/r

Fig. 9. a. Bulk temperature results on parallel-plate channel for a* = 8.5E—3, Biext =0
and Q = 1. b. Bulk temperature results on parallel-plate channel for a* = 0.1, Biex; =0
and Q=1.

diminishes monotonically with increasing axial distance x* from
the duct entrance. Moreover, the maxima of the successive curves
are displaced in time, indicating an increasing phase lag as the
downstream distances. Further inspection of these figures show
that decreasing values of the parameter a' have a decisive influ-
ence both in diminishing the amplitude of the time wise temper-
ature variation and increasing the phase lag.

Finally, in Fig. 10, we present the Nusselt number as function of
time on x™ = 1 respectively in the parallel-plates and circular duct
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a 20.00 —

16.00 —

12.00 —

8.00 —

Nu

4.00 — ¢
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------- Steady state (Nu=8.24)

b 12.00 —

8.00 —

0.00 —

------- Steady state (Nu=4.36)

Fig. 10. a. Nusselt number as function of the time on x" =1 in parallel-plates.
b. Nusselt number as function of the time on x* =1 in a circular duct.

for various values of the inlet frequency. When the bulk and wall
temperatures are close and the heat flow is not zero, the Nusselt
number tends to infinity. When Ty, < T, —1, the heat flux from the
wall to the fluid and the Nusselt number tends to +«. When Ty
becomes bigger than T;, 1, the heat flow changes direction and the

Nuselt number tends to (— ). In other hand, we remark that for
lower inlet frequency (2 =0.001) the horizontal portion of the
Nusselt number curve is close accord with the know steady state
Nusselt number (dashed line) Nu = 8.25 and 4.36 respectively for
parallel-plate channel and circular duct. For higher inlet frequency
(Q =0.1-10), the instantaneous Nusselt number will become highly
time-dependent and the QSA becomes inadequate.

6. Conclusion

In the present paper, the conjugate heat transfer problem has
been studied for the laminar forced convection of a fluid within
a parallel-plate channel and a circular duct with periodically
varying inlet temperature. Initially, the influence of transversal heat
conduction in the duct wall is studied through two practical cases
(brick/air and stainless steel/air). It is shown that for small values of
at(thick wall with a large thermal capacity), the isothermal wall
model cannot be retained.

A complete solution (CS) using a Generalized Integral Transform
Technique (GITT) is developed and compared with a standard
Quasi-steady Approach (QSA) using a constant heat transfer coef-
ficient at fluid-solid interface. These two solutions have displayed
a very good agreement for lower frequencies of the inlet temper-
ature. For higher frequencies, the QSA leads to substantial error.

Appendix

The temperature distribution in the duct wall, respectively for
a parallel-plate channel and circular duct is required in the form as:

SN}
Il

A cos (Br+) + Bsin (Br+)
6 = o (3T+> + DYy (BTJr) .

When we substitute equations (25a) and (25b) into equation
(4c), we obtain the following equation:

(25a)
(25b)

aT*(xtl) Fa [y
——r— +HT (x 71) = 0. (25c¢)
For parallel-plate channel
g Bry . Bry
. rzfilsm (rz 21>Bzextcos (rz 21> 3
sin ,5 — cos
(r2 _]) Br B Br; <r2+1>
~ B Biextsin r;jl @cos rzjl
= AT
i morsin| 27 | BiextCos| =2 3
cos ‘5 + sin
(rz 71) .. B i Brs <r§r1>
Biexsin r;jl %cos r;jl
(25d)

The complex parameter H incorporates the effects of the three
parameters that govern the complete conjugated problem, namely
v, 6 and Biot number Bi. The system of equations (5) may be
reduced to those analyzed in literature [7-13] which neglecting the
thermal diffusion in the duct walls, if the coupling parameter H is
replaced by:

Ho = Bi* +ib*. (26a)

This particular case is obtained in present study for small values
of B(sinf = ), this condition can be justified only for heat transfer in
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flows bounded by extremely thin walls. Then, the parameter H as
expressed by:

B2(15 — 1) — Biex (r§ — 1) —Biexe?rs

limH = —y . (26Db)
B—0 (rf —=1)"[1 + Biext(r; — 1)]

Moreover if the duct wa}l external surface is insulated
(Biext — 0), then the coefficient H becomes:
. ~ ~ Y %2 + .
limH = Hy = — — —1)B . 26
51151) 0 rzr 1 {ﬂ (rz > lext} (26¢)

For a circular duct:
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(27a)

For the thin wall (6—0), the effects of heat conduction in the
wall can be neglected, then:

L ) 2 . 7 Bry
52(r2+_1)(%—H)—ZBlext(r;—l) —Biext’1n rifrﬁ

limA=—vy
-0

2 ri—1 . ﬁr* . R
2(ry 1) 1+(2r )+Blextln @_31 —Bzextln(%)

(27b)

In addition for a zero surface heat flux (Biext —0), we obtain:

(r;%l){fﬂ ~ Biex (1§ — 1)]

Appendix. Supplementary data

H = _ (27¢)

Supplementary data associated with this article can be found in
the online version, at doi:10.1016/j.ijthermalsci.2009.05.012.
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